Clustering using Max-norm Constrained Optimization
نویسندگان
چکیده
We suggest using the max-norm as a convex surrogate constraint for clustering. We show how this yields a better exact cluster recovery guarantee than previously suggested nuclear-norm relaxation, and study the effectiveness of our method, and other related convex relaxations, compared to other clustering approaches.
منابع مشابه
Matrix completion via max-norm constrained optimization
This paper studies matrix completion under a general sampling model using the max-norm as a convex relaxation for the rank of the matrix. The optimal rate of convergence is established for the Frobenius norm loss. It is shown that the max-norm constrained minimization method is rate-optimal and it yields a more stable approximate recovery guarantee, with respect to the sampling distributions, t...
متن کاملA max-norm constrained minimization approach to 1-bit matrix completion
We consider in this paper the problem of noisy 1-bit matrix completion under a general non-uniform sampling distribution using the max-norm as a convex relaxation for the rank. A max-norm constrained maximum likelihood estimate is introduced and studied. The rate of convergence for the estimate is obtained. Information-theoretical methods are used to establish a minimax lower bound under the ge...
متن کاملPractical Large-Scale Optimization for Max-norm Regularization
The max-norm was proposed as a convex matrix regularizer in [1] and was shown to be empirically superior to the trace-norm for collaborative filtering problems. Although the max-norm can be computed in polynomial time, there are currently no practical algorithms for solving large-scale optimization problems that incorporate the max-norm. The present work uses a factorization technique of Burer ...
متن کاملSolving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms
Sugeno-Weber family of t-norms and t-conorms is one of the most applied one in various fuzzy modelling problems. This family of t-norms and t-conorms was suggested by Weber for modeling intersection and union of fuzzy sets. Also, the t-conorms were suggested as addition rules by Sugeno for so-called $lambda$–fuzzy measures. In this paper, we study a nonlinear optimization problem where the fea...
متن کاملConvex Subspace Representation Learning from Multi-View Data
Learning from multi-view data is important in many applications. In this paper, we propose a novel convex subspace representation learning method for unsupervised multi-view clustering. We first formulate the subspace learning with multiple views as a joint optimization problem with a common subspace representation matrix and a group sparsity inducing norm. By exploiting the properties of dual ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1202.5598 شماره
صفحات -
تاریخ انتشار 2012